The Protective Effects of Icariin against the Homocysteine-Induced Neurotoxicity in the Primary Embryonic Cultures of Rat Cortical Neurons.

نویسندگان

  • Xiao-Ang Li
  • Yuen-Shan Ho
  • Lei Chen
  • W L Wendy Hsiao
چکیده

Icariin, an ingredient in the medicinal herb Epimedium brevicornum Maxim (EbM), has been considered as a potential therapeutic agent for neurodegenerative diseases such as Alzheimer's disease (AD). Hyperhomocysteinaemia is a risk factor for AD and other associated neurological diseases. In this study we aim to investigate whether icariin can reverse homocysteine (Hcy)-induced neurotoxicity in primary embryonic cultures of rat cortical neurons. Our findings demonstrated that icariin might be able restore the cytoskeleton network damaged by Hcy through the modulation of acetyl-α-tubulin, tyrosinated-α-tubulin, and phosphorylation of the tubulin-binding protein Tau. In addition, icariin downregulated p-extracellular signal-regulated kinase (ERK) which is a kinase targeting tau protein. Furthermore, icariin effectively restored the neuroprotective protein p-Akt that was downregulated by Hcy. We also applied RT² Profiler PCR Arrays focused on genes related to AD and neurotoxicity to examine genes differentially altered by Hcy or icariin. Among the altered genes from the arrays, ADAM9 was downregulated 15 folds in cells treated with Hcy, but markedly restored by icariin. ADAM family, encoded α-secreatase, plays a protective role in AD. Overall, our findings demonstrated that icariin exhibits a strong neuroprotective function and have potential for future development for drug treating neurological disorders, such as AD.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adrenomedullin protects rat dorsal root ganglion neurons against doxorubicin-induced toxicity by ameliorating oxidative stress

Objective(s): Despite effective anticancer effects, the use of doxorubicin (DOX) is hindered due to its cardio and neurotoxicity. The neuroprotective effect of adrenomedullin (AM) was shown in several studies. The present study aimed to evaluate the possible protective effects of AM against DOX-induced toxicity in dorsal root ganglia (DRGs) neurons. M...

متن کامل

Effects of different culture media on optimization of primary neuronal cell culture for in vitro models assay

Background: In vitro model studies are becoming increasingly popular for experimental research designs. They include isolation and expansion of cells of a particular tissue, such as the nervous tissue which contributes to understanding the underlying mechanisms in many pathologies. It enables  the scrutinization of intracellular signaling pathways responsible for cell death. OBJECTIVES: In the ...

متن کامل

New insight into the functional role of acetylcholine in developing embryonic rat retinal neurons.

PURPOSE To examine the effects of acetylcholine (ACh) on glutamate-induced neurotoxicity in embryonic rat retinal neurons. METHODS Primary cultures were obtained from rat retinas at embryonic days 17 to 19. Cultured cells were exposed to glutamate for 10 minutes, followed by incubation in glutamate-free medium for 1 hour. Drugs were added to the incubation medium for 1 to 24 hours until immed...

متن کامل

The Neuroprotective Effects of Long-Term Repetitive Transcranial Magnetic Stimulation on the Cortical Spreading Depression-induced Damages in Rat’s Brain

Introduction: Cortical Spreading Depression (CSD) is a propagating wave of neural and glial cell depolarization with important role in several clinical disorders. Repetitive Transcranial Magnetic Stimulation (rTMS) is a potential tool with preventive treatment effects in psychiatric and neuronal disorders. In this paper, we study the effects of rTMS on CSD by using behavioral and histological a...

متن کامل

The study of the neuroprotective effects of curcumin, against homocysteine intracerebroventricular injection –induced cognition impairment and oxidative stress in the rat

Introduction: Aging is the major risk factor for neurodegenerative diseases and oxidative stress is involved in the pathophysiology of these diseases. Oxidative stress can induce neuronal damages and modulate intracellular signaling, ultimately leading to neuronal death by apoptosis or necrosis. Methods: In this study, we investigated the possible antioxidant and neuroprotective properties o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecules

دوره 21 11  شماره 

صفحات  -

تاریخ انتشار 2016